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Abstract
We use the semiclassical (Doppler shift) approximation to calculate magnetic field
angle-dependent density of states and thermal conductivity κzz for a superconductor with a
quasi-two-dimensional Fermi surface and line nodes along kx = 0 and ky = 0. The results are
shown to be in good quantitative agreement with experimental results obtained for YNi2B2C
(Izawa K et al 2002 Phys. Rev. Lett. 89 137006).

1. Introduction

YNi2B2C is a type II superconductor with a relatively
high transition temperature Tc = 15.6 K [2]. Although
initially thought to be a conventional s-wave superconductor,
accumulated evidence soon suggested otherwise. Power law
behaviour in the heat capacity Cp/T ∝ T 2 was the first
indication that YNi2B2C is an unconventional superconductor
with point nodes in the gap function [3, 4]. However, the field
dependence of the heat capacity and thermal conductivity was
found to be Cp ∝ √

H , indicative of line nodes [1, 4, 5]. The
NMR spin relaxation rate 1/T1 was measured to be ∝T 3 with
no Hebel–Slichter peak [6], again consistent with line nodes in
the gap function. Finally, Raman scattering showed a peak in
the electronic A1g and B2g response [7], possibly indicative of
a B2g symmetry gap function. Such a gap function takes the
form �(k) ∝ kxky and thus has symmetry-required line nodes
along kx = 0 and ky = 0 [8, 9]. In contrast to these findings,
field-angle-dependent measurements of thermal conductivity
and specific heat were claimed to be indicative of point nodes
in the gap function [1, 10, 11]. The reconciliation of these
results, and hence the symmetry of the gap function, remains
an important unresolved issue.

YNi2B2C belongs to the crystallographic space group
I 4/mmm (No. 139, D17

4h) [12]. The lattice is body-centred
tetragonal (bct) with a = 3.526 Å and c = 10.543 Å [3].
According to symmetry analysis for D4h crystals [8, 9], gap
functions with line nodes are found only for singlet pairing,
while point nodes are found only for triplet pairing. Various
nodal configurations can occur, depending on the irreducible
representation of D4h by which the superconducting order
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parameter transforms. Nodes in the gap function are normally
detected via quasiparticles (qps) which appear in the vicinity
of gap nodes in k-space as a result of either finite temperature,
impurities or Doppler shift in the presence of an applied
magnetic field. In these kinds of measurements, the nodes will
be invisible if there is no Fermi surface in the direction of the
nodes; thus the shape and connectivity of the Fermi surface
plays an important role.

The Fermi level crosses the 17th, 18th and 19th bands.
The topology of the Fermi surface is highly sensitive to the
precise position of the Fermi level due to a dispersionless band
between the � and X points. Thus different band structure
calculations share common features but the resulting Fermi
surfaces have significant differences [13–15]. Yamaguchi et al
[15] correlated their results with de Haas–van Alphen (dHvA)
measurements in order to fix the Fermi energy. The 18th
and 19th bands were found to produce closed Fermi surfaces
around various points in the Brillouin zone. However, the
17th band produces a large electron Fermi surface multiply
connected by necks. Part of this surface appears as dHvA
oscillations perpendicular to the c axis. The orbits do not
appear to be closed in the c direction; instead, they seem
to possess a two-dimensional character that extends in the c
direction, as shown by the upward curvature of the dHvA
frequencies about the [001] direction, shown in figure 3 of [15].

In the vortex phase of a type II superconductor qps
may be either localized about vortex cores or delocalized.
It was shown some time ago that the contribution to
the low-energy density of states in a superconductor with
line nodes comes from delocalized qps in the vicinity
of the nodes [16]. The delocalized qps can be treated
with a semiclassical (Doppler shift) approximation; this
approach provided a good description of field-angle-dependent
specific heat and thermal conductivity of the line node
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Figure 1. Fermi surfaces for three different values of b = v′
F

vF
. The

surface in (c) has the largest value of b.

(This figure is in colour only in the electronic version)

superconductors YBa2Cu3O [17, 18] and CeCoIn5 [19].
However, Volovik’s argument does not extend to typical point
node superconductors for which the gap function vanishes
linearly in k. For these point node superconductors, the
semiclassical calculation may still be performed [20] but, as
may be expected, these results are not in agreement with any
experiment involving putative point node superconductors so
far.

In this paper, we use the semiclassical approximation
to calculate the field-angle-dependent density of states and
thermal conductivity for a superconductor with line nodes and
a quasi-2D Fermi surface, for the purpose of demonstrating
that the results of such measurements on YNi2B2C are, in
fact, consistent with this scenario, in contrast to what has been
claimed [1].

For simplicity, we assume that the Fermi surface has the
shape shown in figure 1, for which the qp energy spectrum
takes the form

ε(k) = k2
x + k2

y

2m
+ ε′

F cos ckz − εF (1)

where ε′
F ≡ k′

Fc−1

2m � εF. A gap function with B2g symmetry
has line nodes along kx = 0 and ky = 0. The Fermi momenta
along these nodes (parametrized by kz) are

kF1,3 = (0,±(2m(εF − ε′
F cos ckz))

1/2, k ′
F sin ckz)

≈ (0,±kF, k ′
F sin ckz) (2)

kF2,4 = (±(2m(εF − ε′
F cos ckz))

1/2, 0, k ′
F sin ckz)

≈ (±kF, 0, k ′
F sin ckz). (3)

The magnetic field rotates in the xy plane with an angle ε

with respect to the x axis:

H = H (cos ε, sin ε, 0). (4)

The supercurrent circulates perpendicular to the field as a
function of the distance r from the vortex core and winding
angle β:

vs(r) = 1

2mr
(− sin ε cos β, cos ε cos β, sin β). (5)

The Doppler shifts associated with each line node are αi (r) =
kFi · vs :

α1,3(r) = 1

2mr
[±kF cos ε cos β + k ′

F sin β sin ckz] (6)

α2,4(r) = 1

2mr
[∓kF sin ε cos β + k ′

F sin β sin ckz]. (7)

2. Density of states

In the semiclassical treatment, the argument of Green’s
function iωn is replaced by iωn + α, where α is the Doppler
shift. The quasiparticle energy is E(k) = √

ε2(k) + �2(k),

which is ≈
√

v2
Fk2

1 + v2
gk2

2 in the vicinity of a node [23]. Here

k1 points in the direction of the node, k2 is perpendicular to k1

in the xy plane and the gap velocity is vg = ∂�/∂k2|node. In
the vicinity of the j th node, Green’s function takes the form

G(k, iω̃n, r) = iω̃n + α j(r) + vFk1

(iω̃n + α j (r))2 + v2
Fk2

1 + v2
gk2

2

(8)

where iω̃n = iωn + i�0 and �0 is the scattering rate at zero
energy. The density of states is

N(ω, r) = − 1

π

∑

k

Im G(k, ω̃, r). (9)

We divide the volume of integration into four curved cylinder-
shaped volumes, each centred around a line node on the
Fermi surface [23], and perform the integration across the disc
spanned by k1 and k2:

N(0, r) = �0

4π3vFvg

4∑

j=1

∫ π/c

−π/c
dkz

×
[

ln
p0√

α2
j (r) + �2

0

+ α j (r)

�0
tan−1 α j (r)

�0

]
(10)

where p0 is the integration cutoff. In the clean limit
|α j/�0| 	 1 the density of states is

N(0, r) = 1

4π3vFvg

∫ π/c

−π/c
dkz(|α1(r)| + |α2(r)|

+ |α3(r)| + |α4(r)|). (11)

Averaging over the vortex cross section, we obtain

〈N(0, r)〉H = 1

4π3vFvg

1

π R2

∫ R

ξ0

drr
∫ 2π

0
dβ

∫ π/c

−π/c
dkz

× (|α1(r)| + |α2(r)| + |α3(r)| + |α4(r)|). (12)

This leads to the result

〈N(0, r)〉H ≈ 8

π3vgc

1

π R

[√
b2 + C2 E

(
b2

b2 + C2

)

+
√

b2 + S2 E

(
b2

b2 + S2

)]
(13)

where b = v′
F/vF, c is the lattice constant in the c direction,

C = cos ε, S = sin ε and E is the complete elliptic integral of

2
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Figure 2. Clean limit density of states (the dimensionless expression
in the square brackets of equation (14)) as a function of rotating field
angle ε (in radians) for b = 0.02, 0.05 and 0.10.

the second kind. Using NF ∼ 1/cvgξ0 and ξ0/R ∼ √
H/Hc2,

we find

〈N(0, r)〉H ∼ NF

√
H

Hc2

[√
b2 + C2 E

(
b2

b2 + C2

)

+
√

b2 + S2 E

(
b2

b2 + S2

)]
. (14)

This function is shown in figure 2 for various values of b. It is
seen that deviations from the perfectly 2D cylindrical Fermi
surface leads to a softening of the cusps in the density of
states. Won and Maki [21] performed a similar calculation
of the density of states, and also obtained analytic expressions
in terms of elliptic integrals. However, their final results are
slightly different due to different considerations; in particular,
the cusp features shown in figure 2 do not appear in [21].

In the dirty limit |α j/�0| � 1 we get

〈N(0, r)〉H = �0

4π3vFvg

1

π R2

∫ R

ξ0

drr
∫ 2π

0
dβ

∫ π/c

−π/c
dkz

×
(

4 ln
p0

�0
+ α2

1(r)

�2
0

+ α2
2(r)

�2
0

+ α2
3(r)

�2
0

+ α2
4(r)

�2
0

)
(15)

which produces no oscillations with respect to the rotating
field.

3. Thermal conductivity

The thermal conductivity tensor is given by the Kubo formula,
which is expressed in terms of the imaginary part of Green’s
function as

κ̃(0, r)

T
= k2

B

3

∑

k

vFvFTr[Im G̃ret(0, r) Im G̃ret(0, r)], (16)

where kB is the Boltzmann constant and vF is the Fermi
velocity in the direction of k. By again dividing the volume
of integration into four regions and introducing the integration

variable p =
√

v2
Fk2

1 + v2
gk2

2 we find

κ̃(0, r)

T
= k2

B

3

1

(2π3)vFvg

∫ 2π

0
dφ

∫ p0

0
dp p

∫ π/c

−π/c
dkz

×
4∑

j=1

(vFvF) j
2�2

0

[(α j(r) + p)2 + �2
0]2

(17)

= k2
B

6π2vFvg

∫ π/c

−π/c
dkz

4∑

j=1

(vFvF) j

×
(

1 + α j (r)

�0

(
tan−1 α j (r)

�0
− π

2

))
. (18)

Using (2) and (3), in zero magnetic field we get

κ̃(0, 0)

T
= 2k2

BvF

3πcvg

( 1 0 0
0 1 0
0 0 (

v′
F

vF
)2

)

. (19)

In a finite magnetic field, terms linear in the Doppler shift will
vanish upon integration. So the magnetic part of the thermal
conductivity is

δκ̃(0, r)

T
= k2

B

6π2vFvg

∫ π/c

−π/c
dkz

4∑

j=1

(vFvF) j

× α j (r)

�0
tan−1 α j (r)

�0
. (20)

In the clean limit, this reduces to

δκ̃(0, r)

T
= k2

B

12πvFvg

∫ π/c

−π/c
dkz

4∑

j=1

(vFvF) j
|α j(r)|

�0
. (21)

The integrand is

v2
F

�0

⎛

⎝
|α2| + |α4| 0

0 |α1| + |α3|
v′

F
vF

(|α2| − |α4|) sin ckz
v′

F
vF

(|α1| − |α3|) sin ckz
v′

F
vF

(|α2| − |α4|) sin ckz

v′
F

vF
(|α1| − |α3|) sin ckz

(
v′

F
vF

)2(|α1| + |α2| + |α3| + |α4|) sin2 ckz

⎞

⎟⎟
⎠ . (22)

The off-diagonal components vanish in the vortex average and
the diagonal components are

〈δκxx 〉H

T
= 4

3π2

k2
B

R�0

v2
F

vgc

√
b2 + S2 E

(
b2

b2 + S2

)
(23)

〈δκyy〉H

T
= 4

3π2

k2
B

R�0

v2
F

vgc

√
b2 + C2 E

(
b2

b2 + C2

)
(24)

〈δκzz〉H

T
= 4

9π2

k2
B

R�0

v2
F

vgc

(√
b2 + S2

[
−S2 K

(
b2

S2 + b2

)

+ (2b2 + S2)E

(
b2

S2 + b2

)]

+
√

b2 + C2

[
−C2 K

(
b2

C2 + b2

)

+ (2b2 + C2)E

(
b2

C2 + b2

)])
(25)
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Figure 3. Clean limit thermal conductivity κzz (the dimensionless
expression in the round brackets of equation (25)) as a function of
rotating field angle ε (in radians) for b = 0.02, 0.05 and 0.10.

where K is the complete elliptic integral of the first kind. κzz is
plotted in figure 3 for different values of b. In the limit b → 0
the cusps are sharp; however, the oscillation amplitude goes to
zero. The oscillation amplitude increases rapidly with b.

In the dirty limit, (20) reduces to

δκ̃(0, r)

T
= k2

B

6π2vFvg

∫ π/c

−π/c
dkz

4∑

j=1

(vFvF) j

α2
j (r)

�2
0

. (26)

Again, the off-diagonal components vanish in the vortex
average and the diagonal elements are

〈
δκxx (0, r)

T

〉

H

= k2
Bv3

F

12πvg
log(R/ξ0)(2C2 + b2) (27)

〈
δκyy(0, r)

T

〉

H

= k2
Bv3

F

12πvg
log(R/ξ0)(2S2 + b2) (28)

〈
δκzz(0, r)

T

〉

H

= k2
Bv3

F

12πvg
log(R/ξ0)(1 + 3b2/2). (29)

Similar to the dirty limit density of states (15), there are no
rotating-field-dependent oscillations in the dirty limit of κzz .

4. Discussion and conclusions

The topology of the true Fermi surface of YNi2B2C shown
in [15] is difficult to discern: however, the validity of our

calculation only requires that the Fermi surface exists at the
positions of the nodes and spans all or most of the Brillouin
zone in the c direction with a slight curvature characterized
by the parameter b. The main point is that the cusp features
observed in the field angle-dependent heat capacity [10] are
a feature of line nodes and the cusp features observed in the
field angle-dependent thermal conductivity are a feature of line
nodes on a quasi-2D Fermi surface.

Alternatively, a scenario involving point nodes that vanish
quadratically in k, such as that proposed by Maki et al [22],
will display the same qualitative features as line nodes on
a cylindrical Fermi surface. The thermodynamics are the
same and a non-zero Fermi velocity in the c direction in the
vicinity of the node is required. A semiclassical treatment
of quasiparticles originating from quadratic point nodes does
not depend on the shape of the Fermi surface outside the
vicinity of nodes. While this scenario does satisfactorily
account for experimental observations, it must be noted that,
among all possible symmetry-allowed order parameters for
a superconductor with D4h symmetry, there are none with
symmetry-required quadratic point nodes [8, 9].

In the wake of the Maki et al proposed gap function, sev-
eral improvements to the semiclassical (Doppler shift) treat-
ment of point node superconductors have been implemented,
all of which include realistic anisotropy of the Fermi veloc-
ity in the a–b plane [24–26]. However, as we now show, our
semiclassical results are in reasonable quantitative agreement
with experimental results. Using R ≈ 4 × 10−8 m (for a 1 T
field), T = 0.56 K, EF = 9 Ryd [15], vF ≈ 3 × 107 m s−1,
gap maximum �0 = vgh̄kF = 30 K and scattering rate
�0 = 1 K leads to an estimate of the prefactor in (25) of
4T
9π2

k2
B

R�0

v2
F

vgc ≈ 104 W K−1 m−1. The experimentally observed

oscillation amplitude is ≈ 2 × 10−3 W K−1 m−1. Comparing
with the oscillation amplitudes shown in figure 3, one may de-
duce that the value of b is approximately 0.02. Such a small
value of b produces sharp cusps in the field angle-dependent
κzz oscillations and is therefore fully consistent with experi-
ment.

Finally, we comment on the uniqueness of the proposed
order parameter, � ∼ kx ky . As we discussed in section 1,
and as shown by our calculations of angle-dependent thermal
conductivity, most experiments (with the possible exception
of early heat capacity measurements) are best explained by a
superconducting gap function with line nodes and not point
nodes. Moreover, the angular dependence of the thermal
conductivity indicates that the nodes are in the directions
kx = 0 and ky = 0. Among all possible superconducting
order parameters for a crystal with D4h symmetry classified
in [8] and [9], the gap function � ∼ kxky , which belongs
to the irreducible representation B2g of the point group D4h,
is the only one with line nodes in the directions kx = 0 and
ky = 0 only.

Thus the most straightforward model that best describes
accumulated observations on YNi2B2C is that the supercon-
ducting gap function is � ∼ kxky , which belongs to the irre-
ducible representation B2g of the point group D4h, with associ-
ated line nodes along kx = 0 and ky = 0.
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